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Infection with seasonal influenza A viruses induces immunity to potentially pandemic influenza A viruses of
other subtypes (heterosubtypic immunity). We recently demonstrated that vaccination against seasonal influ-
enza prevented the induction of heterosubtypic immunity against influenza A/H5N1 virus induced by infection
with seasonal influenza in animal models, which correlated with the absence of virus-specific CD8™ T cell
responses. Annual vaccination of all healthy children against influenza has been recommended, but the impact
of vaccination on the development of the virus-specific CD8" T cell immunity in children is currently unknown.
Here we compared the virus-specific CD8" T cell immunity in children vaccinated annually with that in
unvaccinated children. In the present study, we compared influenza A virus-specific cellular and humoral
responses of unvaccinated healthy control children with those of children with cystic fibrosis (CF) who were
vaccinated annually. Similar virus-specific CD4™ T cell and antibody responses were observed, while an
age-dependent increase of the virus-specific CD8* T cell response that was absent in vaccinated CF children
was observed in unvaccinated healthy control children. Our results indicate that annual influenza vaccination
is effective against seasonal influenza but hampers the development of virus-specific CD8" T cell responses.
The consequences of these findings are discussed in the light of the development of protective immunity to

seasonal and future pandemic influenza viruses.

The recent pandemic caused by influenza A/HINI virus of
swine origin and the pandemic threat caused by highly patho-
genic avian influenza A/H5N1 viruses highlight the importance
of these emerging viruses. However, the morbidity and mor-
tality rates caused by pandemic influenza viruses may be re-
duced by the presence of immunity to these viruses induced by
infection with seasonal influenza A viruses, so-called hetero-
subtypic immunity. Heterosubtypic immunity has mainly been
demonstrated in animal models (18, 26, 28, 45), and there is
also evidence for the presence of heterosubtypic immunity in
humans (10, 12, 30). Influenza virus-specific CD8* cytotoxic T
lymphocytes (CTLs) are especially thought to contribute to
heterosubtypic immunity since the majority of these cells rec-
ognize and lyse virus-infected cells that present conserved
epitopes located in proteins like the nucleoprotein and the
matrix protein (24, 27, 31, 39-40, 46). Furthermore, in humans
the presence of cross-reactive CTLs inversely correlated with
the extent of viral shedding in the absence of antibodies spe-
cific for the virus used for experimental infection, and in young
children cellular immune responses correlated with protection
against influenza (15, 32).
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Seasonal influenza viruses are also an important cause of
morbidity and mortality, especially in people who are at risk to
develop complications after infection due to underlying dis-
ease. The World Health Organization (WHO) has recom-
mended annual influenza vaccination of these subjects (44). In
addition, it has been recommended in a number of countries
that all healthy children older than 6 months of age be vacci-
nated against seasonal influenza (14, 41). Since universal in-
fluenza vaccines are currently unavailable, annual vaccination
aims at the induction of immunity to circulating seasonal in-
fluenza viruses (A/H3N2, A/HIN1, and B viruses). Currently
used inactivated influenza vaccines generally induce protective
antibody responses against these viruses but inefficiently in-
duce protective immunity to other influenza A virus subtypes
(e.g., H5N1) and cross-reactive virus-specific CD8" T cell re-
sponses (6, 11, 21).

Furthermore, it can be hypothesized that the use of these
vaccines interferes with the induction of heterosubtypic immu-
nity and virus-specific CD8" T cell responses otherwise in-
duced by natural infections, especially in children who are
immunologically naive to influenza viruses (7). We tested this
hypothesis in mice and ferrets and confirmed that the use of
inactivated A/H3N2 vaccines prevented the induction of het-
erosubtypic immunity to a lethal infection with influenza A/In-
donesia/5/05 (H5N1) virus otherwise induced by infection with
A/H3N2 influenza virus (4-6). The prevention of heterosub-
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typic immunity by H3N2 vaccination correlated with reduced
virus-specific CD8" T cell responses.

Furthermore, epidemiological data obtained during the 2009
pandemic suggest that previous vaccination against seasonal
influenza increased the risk of infection with the antigenically
distinct influenza A/HIN1 pandemic virus in children and the
risk of medically attended illness caused by this virus in adults
(23, 25, 37). However, the reason for this in humans is un-
known. Therefore, we wished to compare the frequency of
influenza virus-specific CD8™ T cells in children who annually
received influenza vaccination with the frequency in unvacci-
nated children.

To this end, we collected peripheral blood mononuclear
cells (PBMCs) and plasma samples from cystic fibrosis (CF)
patients and otherwise healthy children undergoing correc-
tional surgery. Since CF patients are at risk for complications
caused by influenza virus infections, annual influenza vacci-
nation is recommended from the time of CF diagnosis on-
wards. PBMCs of the study subjects were tested for the
presence of virus-specific T cells by intracellular gamma
interferon (IFN-v) staining, and plasma samples were tested
for the presence of virus-specific antibodies against various
influenza A virus strains and a number of control antigens
used in the national immunization program. The results
obtained in the present study give insight into the develop-
ment of influenza virus-specific CD8" T cell immunity in
young children and the effect that annual vaccination with
inactivated influenza A virus antigens has on the induction
of this type of immunity.

MATERIALS AND METHODS

Study subjects. Children with CF who received inactivated influenza vaccine
annually and unvaccinated children who visited the hospital to undergo correc-
tional surgery were enrolled in this study. Inclusion criteria for CF children were
age between 2 and 9 years with a first recorded vaccination against seasonal
influenza viruses before or at 4 years of age and annual vaccination subse-
quently, no clinical signs of acute disease at the time of blood collection, no
chronic treatment with immunosuppressive medications, and no laboratory-
confirmed infection with influenza A/HIN1(2009) before or at the time of
blood collection. Inclusion criteria for healthy control children were age
between 2 and 9 years, no vaccination against seasonal influenza, no chronic
treatment with immunosuppressive medications, and no clinical signs of dis-
ease at the time of blood collection. Blood samples were collected during
autumn of 2009 and winter of 2009-2010. Written informed consent was
obtained from parents or caretakers prior to enrollment. The study was
approved by the institutional medical ethics committee (Medisch Ethische
Toetsings Commissie Erasmus MC [METC]; protocol registration number
MEC-2009-359, ABR number 29399).

Serology. Plasma samples of children were collected and stored at —20°C until
use. The presence of antibodies against influenza A viruses was evaluated using
the virus neutralization (VN) assay as described previously (16). Plasma samples
were tested for the presence of antibodies against influenza A vaccine viruses
from the influenza seasons from 2000 to 2010 and the influenza A/HIN1(2009)
virus. To this end, influenza A/H3N2 viruses A/Panama/07/1999, A/Wyoming/3/
2003, A/New York/55/2004, A/Hiroshima/52/2005, A/Wisconsin/67/2005, and
A/Brisbane/010/2007, influenza A/HINI1 viruses A/New Caledonia/20/1999, A/Solo-
mon Islands/3/2006, and A/Brisbane/059/2007, and the influenza A/HIN1(2009)
virus A/Netherlands/602/2009 were inoculated in the allantoic cavity of 11-day-old
embryonated chicken eggs. Allantoic fluid was harvested after 2 days, cleared by
low-speed centrifugation, and stored at —80°C before use in the VN assay. Sera
from ferrets infected with each influenza A virus were used as a positive control.

The plasma samples were also tested for the presence of IgG antibodies
specific for various bacterial and viral vaccine antigens used in the national
immunization program, including those for the agents of mumps, measles, and
rubella, tetanus and diphtheria toxins, and a common viral pathogen (varicella-
zoster virus), as described previously (42).
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Collection of PBMCs and intracellular IFN-y staining of stimulated PBMCs.
Blood samples (maximum, 5 ml) were collected in EDTA tubes (Greiner Bio-
One, Alphen a/d Rijn, The Netherlands), and subsequently, PBMCs were iso-
lated by density gradient centrifugation using Lymphoprep solution (Axis-Shield
PoC AS, Oslo, Norway) and then cryopreserved at —135°C until use. Thawed
PBMCs were resuspended in RPMI 1640 medium (Cambrex, East Rutherford,
NJ) supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 100 TU/ml
penicillin, and 100 pwg/ml streptomycin.

PBMCs were seeded in 96-well U-bottom plates (8 x 10° cells/well) and
infected with vaccine strain Resvir-9 (H3N2) with a multiplicity of infection of 3
or left untreated. After 16 h at 37°C, brefeldin A (2 pg/ml; Sigma-Aldrich,
Zwijndrecht, The Netherlands) was added to the cells. As a positive control, cells
from each individual were also incubated with 1 pg/ml Staphylococcus entero-
toxin B (SEB; Sigma-Aldrich, Zwijndrecht, The Netherlands) during incubation
with brefeldin A. After 6 h, cells were washed, stained with fluorescence-labeled
monoclonal antibodies (MAbs) CD4-Pacific Blue (BD, Alphen a/d Rijn, The
Netherlands) and CD8-PeCy7 (eBioscience, San Diego, CA). To exclude dead
cells in the analysis, cells were also stained with LIVE/DEAD Aqua fixable dead
cell stain (Invitrogen, Breda, The Netherlands). Subsequently, cells were fixed
with fluorescence-activated cell sorter (FACS) lysing solution (BD) and stored at
—80°C until further processing. Cells were permeabilized with FACS permeabi-
lizing solution (BD) and stained with MAbs CD3-peridinin chlorophyll protein
and CDG69-allophycocyanin (both from BD) and IFN-y-fluorescein isothiocya-
nate (eBioscience). Data were acquired using a FACSCanto-II apparatus and
analyzed with FACS Diva software (BD). For each well, the virus-specific CD8*
and CD4" T cell response was determined by calculating the percentage of
IFN-y-positive (IFN-y") cells of the CD69" CD3" CD8" cell population
(IFN-y* CD8") or CD69* CD3* CD4* (IFN-y* CD4") cells. For cells incu-
bated with medium or with Resvir-9, the assay was performed in duplicate.
Subsequently, the influenza A virus-specific and SEB-specific CD8" and CD4™
T cell response of each individual was calculated by subtracting the mean per-
centage of IFN-y* CD8" or IFN-y* CD4" cells from cells incubated with
medium only from the (mean) percentage of IFN-y* CD8* or IFN-y" CD4"
cells incubated with Resvir-9 or SEB.

Statistical analysis. Associations between the age of the children and the T
cell responses of all groups were calculated using the Pearson correlation coef-
ficient (r), and the significance was calculated using analysis of variance, which
was also used to assess the difference in slope between groups. Furthermore,
assuming a binominal distribution, the two-sided exact 95% confidence interval
(CI) was calculated for seroprevalences of antibodies against influenza A/H3N2
and A/HINTI viruses using Stata/SE software, version 11.0. The Mann-Whitney
test was used to compare T cell responses of groups. Differences were considered
significant at P values of <0.05.

RESULTS

Study population. Between 15 October 2009 and 5 February
2010, blood samples were collected from 27 unvaccinated chil-
dren and 14 children with CF vaccinated against influenza
annually. The mean age of unvaccinated control children was
5.9 years, and the median age of this group was 6.0 years
(range, 2.0 to 8.8 years), while the mean age of the group of
vaccinated children was 6.2 years (median, 6.6 years; range, 3.1
to 9.0 years).

Antibody responses to influenza viruses and other selected
antigens. Plasma samples were tested for the presence of an-
tibodies against influenza A/H3N2 and influenza A/HINI1 vi-
ruses by VN assay. In 24 out of 27 children (89%) of the
unvaccinated group, antibodies were detected against at least
one influenza A/H3N2 virus, and in 20 out of 27 children,
antibodies were detected against one of the influenza A/HIN1
viruses, including the influenza A/HIN1(2009) virus. In two
unvaccinated children, no antibodies were detected against
either influenza A/H3N2 or influenza A/HIN1 virus.

In all vaccinated children, antibodies were detected against
at least one influenza A/H3N2 and A/HIN1 virus. In 10 out of
14 (71%) plasma samples of these children, antibodies were
detected against the influenza A/HIN1(2009) virus, against
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FIG. 1. Influenza A virus-specific humoral immunity. The propor-
tion of children of the healthy unvaccinated control group (gray bars)
and the vaccinated group of children with CF (white bars) with anti-
bodies against at least one of the influenza viruses was calculated for
all influenza viruses of each subtype (A) or for all indicated viruses
individually (B). Bars represent percentages with 95% confidence in-
tervals. (C) GMTs were calculated for all samples in which antibodies
against the indicated viruses were detected. Bars represent GMTs with
standard deviations, and the horizontal gray bar indicates the detection
limit of the assay. The asterisks indicate significant differences between
the two groups (P < 0.05).

which they were also vaccinated (Fig. 1A). The proportion of
subjects with antibodies to the relatively older strains influenza
A/Panama/07/99 (H3N2) and A/New Caledonia/20/99 was sig-
nificantly (P < 0.05) greater in the group of vaccinated chil-
dren with CF than in the unvaccinated group (Fig. 1B). These
differences were not observed with more recent virus strains.

Geometric mean titers (GMTs) were calculated for seropos-
itive plasma samples to compare the magnitude of the antibody
response of both groups. A significantly higher GMT was ob-
served in children of the unvaccinated control group for both
influenza A/Panama/07/99 (H3N2) and A/Solomon Islands/3/
2006 (HINT) viruses (P = 0.04 and P = 0.01, respectively). No
significant differences were observed between groups for
GMTs of all other viruses (Fig. 1C).

The IgG antibody responses to mumps, measles, rubella, and
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FIG. 2. IgG antibody responses to various viral and bacterial vac-
cine antigens. Mean IgG antibody response (*SDs) to various viral
and bacterial antigens included in the Dutch national vaccination pro-
gram of the healthy unvaccinated control group (gray bars) and the
vaccinated group of children with CF (white bars) for measles (A),
mumps (B), rubella (C), varicella-zoster (D), diphtheria toxin (E), and
tetanus toxin (F).

varicella-zoster viral antigens and the tetanus toxin and diph-
theria toxin bacterial antigens were similar between the two
study groups (Fig. 2A to F).

Influenza A virus-specific T cell immunity. To assess the
influenza A virus-specific CD8" and CD4™" T cell immunity of
each study subject, PBMCs were stimulated with Resvir-9, and
subsequently, intracellular IFN-y staining was performed. The
percentage of virus-specific IFN-y* CD8™ T cells varied from
0.00 to 2.32 for unvaccinated children, while the percentage of
IFN-y* CD8™" T cells ranged from 0.06 to 1.56 for vaccinated
children. An age-dependent increase of the virus-specific
CD8™" T cell response was observed in the group of unvacci-
nated children (r2 = 0.16; P = 0.040; Fig. 3A), but this was not
observed in the group of vaccinated children (* = 0.012; P =
0.714; Fig. 3B). In addition, the age-dependent increase in
virus-specific CD8" T cells in the unvaccinated group was
significantly different from that in the vaccinated group (P =
0.047). In children older than 5 years of age, a significantly
higher percentage (P = 0.038) of IFN-y* CD8" T cells was
also observed in the unvaccinated control group (mean, 0.86;
standard deviation [SD], 0.67) than in the vaccinated group
(mean, 0.368; SD, 0.451).

No significant age-dependent increase was observed for in-
fluenza A virus-specific CD4" T cell responses in either the
unvaccinated group (©* = 0.027; P = 0.433; Fig. 3C) or the
vaccinated group (* = 0.065; P = 0.379; Fig. 3D). Further-
more, influenza A virus-specific CD4" T cell responses were
similar in both groups; in unvaccinated children, the mean
percentage of IFN-y* CD4™ T cells was 0.187 (SD, 0.169),
while in the vaccinated group, the mean percentage of IFN-y™
CD4™" T cells was 0.202 (SD, 0.276) (P = 1.00).

SEB-specific T cell immunity. In addition to the virus-spe-
cific T cell response, the response of CD4" and CD8™" T cells
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FIG. 3. Correlation between age and influenza virus-specific T cell
responses. The percentage of virus-specific CD8"* IFN-y™* T cells (A
and B) and CD4" IFN-y* T cells (C and D) was determined and
plotted as a function of the age of the individual subjects. Each dot
represents the result for an individual subject, and the correlation
between all subjects of one group was calculated and is indicated by the
black line. Data for both unvaccinated control children (A and C) and
vaccinated children with CF (B and D) are shown. The correlation
between age and the percentage of CD8" IFN-y" T cells was signifi-
cantly different (P < 0.05) between the two study groups.

to the superantigen SEB was assessed for each subject. No
age-related increase for either the SEB-specific CD4* (% =
0.039; P = 0.347; Fig. 4A) or the CD8™" (* = 0.024; P = 0.463;
Fig. 4C) T cell response was observed in unvaccinated children.
Further, no significant differences were observed between the
vaccinated children (mean, 1.72; SD, 1.47) and the unvacci-
nated children (mean, 1.37; SD, 1.01) regarding the SEB-spe-
cific CD4" T cell responses (P = 0.558).

In addition, no age-dependent increase of the SEB-specific
CD4" T cell response was observed in vaccinated children
(r* = 0.148, P = 0.147; Fig. 4B), while the correlation between
age and the SEB-specific CD8" T cell response approached
statistical significance (* = 0.229, P = 0.083; Fig. 4D).

These results indicate that at a young age the percentage of
SEB-specific CD8" IFN-y+ T cells was lower in vaccinated
children than unvaccinated children, while in children older
than 5 years of age, no significant differences were present
between groups (P = (0.134). Furthermore, no correlation was
observed between the SEB-specific CD8™ T cell response and
the influenza A virus-specific CD8" T cell response in the
group of unvaccinated control children (> = 0.021, P = 0.492;
Fig. 4F) and vaccinated children (+* = 0.18, P = 0.12; Fig. 4F).

DISCUSSION

In the present study, we assessed influenza A virus-specific
cellular and humoral immune responses in children with CF
who had been vaccinated against seasonal influenza annually
and in unvaccinated control children. The antibody recognition
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FIG. 4. T cell responses to stimulation with SEB. The percentage
of CD4" IFN-y" T cells (A and C) and CD8" IFN-y" T cells (B and
D) responding to SEB was determined for each subject of the group of
unvaccinated control children (A and C) and the vaccinated children
with CF (B and D). The percentage of SEB-specific CD8* IFN-y" T
cells was also plotted against the percentage of influenza virus-specific
CD8* IFN-y™ T cells for both the control children (E) and the vac-
cinated children with CF (F).

profile was broader in vaccinated children with CF than un-
vaccinated control children. No differences were observed in
the development of virus-specific CD4* T cell responses. How-
ever, in unvaccinated children, an age-dependent increase in
the frequency of virus-specific CD8" T cells which was not
observed in vaccinated children with CF was detected. These
findings are in concordance with our results in the mouse
model, in which we demonstrated that vaccination against sea-
sonal influenza A virus prevented the development of influ-
enza A virus-specific CD8" T cell immunity otherwise induced
by infection (4, 6).

It has been demonstrated previously that the majority of
influenza A virus-specific CD8™" T cells is directed to conserved
viral proteins (29, 33). This indicates that memory CD8* T
cells provoked against seasonal influenza A viruses will cross-
react with other influenza A viruses, even with those of other
subtypes (24, 27). Thus, vaccinated children with CF will de-
velop lower cross-reactive virus-specific CD8* T cell responses
than unvaccinated children.
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The age-dependent increase in the frequency of virus-spe-
cific CD8" T cells in the unvaccinated children most likely
reflects the increase in the number of subjects who experienced
an infection with an influenza virus early in life. Of interest, a
similar pattern for the development of antibodies to influenza
viruses was recently observed in a large seroepidemiological
study performed in children ages 0 to 7 years (3). Indeed, two
unvaccinated subjects without detectable antibodies to any of
the influenza A viruses also had very low frequencies of virus-
specific CD8™ T cells, which thus reflects a lack of exposure to
influenza A virus. Maturation of the immune system may have
contributed to the increased responsiveness observed in older
children (8, 9, 20). However, using SEB, we were unable to
demonstrate an age-dependent increase in CD4 and CD8 T
cell responses to this superantigen.

In the group of CF patients vaccinated annually, the age-
dependent increase in virus-specific CD8™" T cell responses was
absent. Our interpretation of these findings is that vaccination
efficiently induced virus-specific antibodies which protected
against infection with seasonal influenza viruses to a great
extent and thereby prevented the induction of virus-specific
CDS8™ T cell responses.

Although it would have been more ideal to compare the
immune responses of unvaccinated healthy children with those
of vaccinated healthy children, it is unlikely that patients with
CF responded poorly because of intrinsic immunologic defects
for various reasons. First, the virus-specific CD4™ T cell re-
sponse of this group was comparable to that of the unvacci-
nated group. This confirms that the use of inactivated vaccines
induced CD4™" T cell responses but not virus-specific CD8" T
cell responses, which has been demonstrated previously (21).
Second, the antibody titers in the seropositive subjects were
comparable between the two groups. The proportion of sub-
jects with antibodies to older strains was higher in the group of
vaccinated children. This confirms that patients with CF can be
vaccinated effectively against seasonal influenza and the com-
plications that these infections may cause in this vulnerable
group of high-risk patients. Third, the CD8™ T cell response to
SEB was not affected in the group of CF patients and was
comparable to that in unvaccinated subjects. Finally, the anti-
body responses to various viral and bacterial vaccine antigens
used in the Dutch national immunization program were similar
for the two groups, indicating that there were no differences in
the functionality of T and B cells between the groups. It is
unlikely that subjects of the two groups have been exposed to
viruses containing different B or T cell epitopes since the
viruses causing influenza epidemics are highly homogeneous,
especially in a small geographical region like The Netherlands.

Universal vaccination of healthy children is not practiced in
The Netherlands, and therefore, this study group was not avail-
able. In addition, since universal vaccination of children 6 to 59
months of age has been recommended and practiced in some
countries only since 2007, the long-term effects of vaccination
of healthy children cannot be examined at present. Therefore,
results from the present study warrant follow-up studies with
larger cohorts of vaccinated and unvaccinated children in the
future, especially since epidemiological data suggest that pre-
vious vaccination against seasonal influenza increased the risk
of infection with pandemic influenza A/HINI virus in 2009
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(10). Such studies would also exclude potential confounding
explanations for the differences observed.

Thus, annual vaccination against influenza is effective but
may have potential drawbacks that have previously been un-
derappreciated and that are also a matter of debate (7, 22, 37).
By no means do we suggest halting annual vaccination of
children, especially those at high risk for complications, such as
CF patients. A number of studies have demonstrated that
annual vaccination reduces the morbidity and mortality caused
by seasonal influenza in children and is (cost-)effective (23,
34-36). However, long-term annual vaccination using inacti-
vated vaccines may hamper the induction of cross-reactive
CD8" T cell responses by natural infections and thus may
affect the induction of heterosubtypic immunity. This may ren-
der young children who have not previously been infected with
an influenza virus more susceptible to infection with a pan-
demic influenza virus of a novel subtype. Therefore, we argue
for the development and use of vaccines that could induce
broadly protective immune responses in children. For example,
it has been demonstrated that live attenuated influenza vac-
cines induce virus-specific CD8" T cell responses (21, 23a). In
addition, it has been demonstrated that live attenuated influ-
enza vaccines are also effective against drift variants in children
(1, 2, 19). The development of broadly protective vaccines has
been on the research agenda for some time, and progress has
been made (13, 17, 38, 43). Young children, whether they are
at high risk for influenza-associated complications or not, may
especially benefit the most from these vaccines.
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